Bibliography

Berberine Bibliography

  1. Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM, Khan I, Rahman MM, Jeandet P, Gondal TA. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules. 2021; 26(23):7368. https://doi.org/10.3390/molecules26237368
  2. Samadi, P, Sarvarian, P, Gholipour, E, et al. Berberine: A novel therapeutic strategy for cancer. IUBMB Life. 2020; 72: 2065– 2079. https://doi.org/10.1002/iub.2350
  3. Min Huang 1, Xin Jiang 2, Yubin Liang 1, Qiong Liu 3, Siyan Chen 1, Yi Guo , Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Experimental Gerontology, Volume 91, May 2017, Pages 25-33 https://doi.org/10.1016/j.exger.2017.02.004
  4. Gomes AP, Duarte FV, Nunes P, Hubbard BP, Teodoro JS, Varela AT, Jones JG, Sinclair DA, Palmeira CM, Rolo AP. Biochim Biophys Acta. 2012 Feb;1822(2):185-95. doi: 10.1016/j.bbadis.2011.10.008. Epub 2011 Oct 17. PMID: 22027215
  5. Gomes AP, Duarte FV, Nunes P, Hubbard BP, Teodoro JS, Varela AT, Jones JG, Sinclair DA, Palmeira CM, Rolo AP. Biochim Biophys Acta. 2012 Feb;1822(2):185-95. doi: 10.1016/j.bbadis.2011.10.008. Epub 2011 Oct 17. PMID: 22027215
  6. A Pandey, K Vishnoi, S Mahata, SC Tripathi. (n.d.). Berberine and curcumin target survivin and STAT3 in gastric cancer cells and synergize actions of standard chemotherapeutic 5-Fluorouracil. Taylor & Francis. https://www.tandfonline.com/doi/full/10.1080/01635581.2015.1085581.
  7. Barzilai, N., Crandall, J., Kritchevsky, S., Espeland, M., Metformin as a tool to target Aging. Cell Metabolism. Vol 23, issue 6, p. 1060-1065.
  8. Berberine (natural yellow 18): Topoisomerase inhibitor: Medchemexpress. MedchemExpress.com. (n.d.). https://www.medchemexpress.com/berberine.html.
  9. Berberine could be longevity's "best-kept secret". Longevity.Technology - Latest News, Opinions, Analysis and Research. (2021, July 23).  https://www.longevity.technology/berberine-could-be-longevitys-best-kept-secret/.
  10. Chen, W., Miao, Y.-Q., Fan, D.-J., Yang, S.-S., Lin, X., Meng, L.-K., & Tang, X. (2011, June). Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134654/.
  11. Choi, B.-H., Ahn, I.-S., Kim, Y.-H., Park, J.-W., Lee, S.-Y., Hyun, C.-K., & Do, M.-S. (2006, December 31). Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Experimental & molecular medicine. https://www.ncbi.nlm.nih.gov/pubmed/17202835.
  12. Dang, Y., et al., Berberine ameliorates cellular senescence and extends lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell, Vol 19, issue 1, 2019 https://doi.org/10.1111/acel.13060
  13. Derosa G;Maffioli P;CiceroAF; (n.d.). Berberine on metabolic and cardiovascular risk factors: An analysis from preclinical evidence to clinical trials. Expert opinion on biological therapy. https://pubmed.ncbi.nlm.nih.gov/22780092/.
  14. D'Arcy MS. A review of the chemopreventative and chemotherapeutic properties of the phytochemicals berberine, resveratrol and curcumin, and their influence on cell death via the pathways of apoptosis and autophagy. Cell Biol Int. 2020 Sep;44(9):1781-1791. doi: 10.1002/cbin.11402. Epub 2020 Jun 10. PMID: 32449796.
  15. D'Arcy MS;Pike CVS;CoussonsPJ; (n.d.). A novel combined resveratrol/berberine phytochemotheraputic using the Hepg2 cell line as a model for the treatment of hepatocarcinoma. Cell biology international. Retrieved June 2, 2022, from https://pubmed.ncbi.nlm.nih.gov/34460138/.
  16. Duff, C., Hooper, N., PCSK9: An emerging target for treatment of hypercholesterolemia. Expert opinion on therapeutic targets.  https://pubmed.ncbi.nlm.nih.gov/21204732/.
  17. Encyclopædia Britannica, inc. (n.d.). Alkaloid. Encyclopædia Britannica.  https://www.britannica.com/science/alkaloid.
  18. Fallabel, C., About Christine Fallabel. Christine Fallabel has been living with type 1 diabetes since 2000. She works in public policy, Rios, J., & Lynn, S. (2022, January 30). Metformin and weight loss: Can a pill help you lose weight? Diabetes Strong.  https://diabetesstrong.com/metformin-weight-loss.
  19. Fast dissolve nmns™ tablets – 240 CT. RENUE BY SCIENCE Bioavailable NAD+ Boosters. (n.d.). Retrieved May 7, 2022, from https://alivebyscience.com/berberine-to-boost-weight-loss-lower-blood-sugar-more/.
  20. Feng, R., Shou, J.-W., Zhao, Z.-X., He, C.-Y., Ma, C., Huang, M., Fu, J., Tan, X.-S., Li, X.-Y., Wen, B.-Y., Chen, X., Yang, X.-Y., Ren, G., Lin, Y., Chen, Y., You, X.-F., Wang, Y., & Jiang, J.-D. (2015, July 15). Transforming berberine into its intestine-absorbable form by the gut microbiota. Nature News.  https://www.nature.com/articles/srep12155.
  21. Giovanini, L., & Bianchi, S. (2016, October 3). Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition.  https://www.sciencedirect.com/science/article/abs/pii/S0899900716302155.
  22. Gruffydd, M. (2022, March 24). Dr Michael Mosely says cutting out sugar spikes can help reduce belly fat. North Wales Live. Retrieved May 7, 2022, from https://www.dailypost.co.uk/news/north-wales-news/dr-michael-mosley-shares-how-23461382.
  23. Habtemariam, S. (2020, April 18). The quest to enhance the efficacy of berberine for type-2 diabetes and associated diseases: Physicochemical modification approaches. Biomedicines.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235753/.
  24. Harris, A. (2022, January 21). How the study of epigenetics could help reverse skin aging. vancouversun.  https://vancouversun.com/life/fashion-beauty/how-the-study-of-epigenetics-could-help-reverse-skin-aging.
  25. Hu Y;Ehli EA;Kittelsrud J;Ronan PJ;Munger K;Downey T;Bohlen K;Callahan L;Munson V;Jahnke M;Marshall LL;Nelson K;Huizenga P;Hansen R;Soundy TJ;Davies GE; (n.d.). Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine: international journal of phytotherapy and phytopharmacology.  https://pubmed.ncbi.nlm.nih.gov/22739410/.
  26. Iside, C., Scafuro, M., Nebbioso, A., & Altucci, L. (1AD, January 1). SIRT1 activation by natural phytochemicals: An overview. Frontiers. https://www.frontiersin.org/articles/10.3389/fphar.2020.01225/full.
  27. Jin Y;Liu S;Ma Q;Xiao D;Chen L; (n.d.). Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. European journal of pharmacology.  https://pubmed.ncbi.nlm.nih.gov/27887947/.
  28. Kashyap, A., Umar, S. M., Dev J․R․, A., Mendiratta, M., & Prasad, C. P. (2022, March 28). In vitro anticancer efficacy of a polyphenolic combination of quercetin, curcumin, and berberine in triple negative breast cancer (TNBC) cells. Phytomedicine Plus.  https://www.sciencedirect.com/science/article/pii/S2667031322000513.
  29. Kim, J., Yang, G., Kim, Y., Kim, J., & Ha, J. (2016, April 1). AMPK activators: Mechanisms of action and physiological activities. Nature News.  https://www.nature.com/articles/emm201616.
  30. Kong, W., wei, J., abidi, P., Lin, M., Inaba, S., Li, C., et al. (2004) berberine is a novel cholesterol lowering drug working through a unique mechanism distinct from statins. Nature Medicine, 10, 1344-1351. - references - scientific research publishing. (n.d.). https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=3114928.
  31. Landray MJ;Haynes R;Hopewell JC;Parish S;Aung T;Tomson J;Wallendszus K;Craig M;Jiang L;Collins R;Armitage J; (n.d.). Effects of extended-release niacin with laropiprant in high-risk patients. The New England Journal of medicine.  https://pubmed.ncbi.nlm.nih.gov/25014686/.
  32. Lau, C.W., yao, X.Q., Chen, Z.Y., Ko, W.H., and Haung, Y., (2001). cardiovascular actions of Berberine. Cardiovasc. drug. rev., 19:234-244. (n.d.).  http://www.sciepub.com/reference/261494.
  33. Martin-Montalvo, A., Mercken, E., Mitchell, S. et al. Metformin improves healthspan and lifespan in mice. Nat Commun 4, 2192 (2013). https://doi.org/10.1038/ncomms3192
  34. Medications that reduce belly fat. Belly Fat? Too Much Insulin. (2022, February 10). https://bellyfathormone.com/medications-that-reduce-belly-fat/.
  35. LP;Mao ZJ;Lin M;Zhang X;Qin. (n.d.). Combined use of astragalus polysaccharide and berberine attenuates insulin resistance in IR-HEPG2 cells via regulation of the gluconeogenesis signaling pathway. Frontiers in pharmacology.  https://pubmed.ncbi.nlm.nih.gov/31920677/.
  36. McCubrey JA;Lertpiriyapong K;Steelman LS;Abrams SL;Yang LV;Murata RM;Rosalen PL;Scalisi A;Neri LM;Cocco L;Ratti S;Martelli AM;Laidler P;Dulińska-Litewka J;Rakus D;Gizak A;Lombardi P;Nicoletti F;Candido S;Libra M;Montalto G;Cervello M; (n.d.). Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and micrornas. Aging. (Albany NY). 2017 Jun 12;9(6):1477-1536. doi: 10.18632/aging.101250. PMID: 28611316; PMCID: PMC5509453. https://pubmed.ncbi.nlm.nih.gov/28611316/.
  37. M;Hudy D;Poterala-Hejmo A;Hejmo T;Buldak RJ;Dziedzic A; (n.d.). Effects of resveratrol, Berberine and their combinations on reactive oxygen species, survival and apoptosis in human squamous carcinoma (SCC-25) cells. Anti-cancer agents in medicinal chemistry.  https://pubmed.ncbi.nlm.nih.gov/30950357/.
  38. Nast, C. (n.d.). Metformin: The first anti-ageing drug? The Future of Ageing: Wired. WIRED UK. https://www.wired.co.uk/video/watch/metformin-anti-ageing-the-future-of-ageing.
  39. Navrotskaya, V., et al. Berberine Prolongs Life Span and Stimulates Locomotor Activity of Drosophila melanogaster. American Journal of Plant Sciences, Vol.3 No.7A, 2012
  40. Nutraceuticals as alternative for pharmaceuticals. Utopia. (n.d.). https://utopiacancercenter.com/treatments/nutraceuticals/.
  41. Pang B;Zhao LH;Zhou Q;Zhao TY;Wang H;Gu CJ;Tong XL; (n.d.). Application of berberine on treating type 2 diabetes mellitus. International journal of endocrinology.  https://pubmed.ncbi.nlm.nih.gov/25861268/.
  42. Rhizoma Coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation. (n.d.). http://www.aginganddisease.org/EN/10.14336/AD.2016.0620.
  43. Singh IP;MahajanS; (n.d.). Berberine and its derivatives: A Patent Review (2009 - 2012). Expert opinion on therapeutic patents.  https://pubmed.ncbi.nlm.nih.gov/23231038/.
  44. Targeting aging with metformin (TAME) trial https://www.afar.org/tame-trial
  45. Wang, Y., Liu, Y., Du, X., Ma, H., & Yao, J. (2020, January 30). The anti-cancer mechanisms of berberine: A Review. Cancer management and research. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996556/.
  46. Witchel, S. F., Oberfield, S. E., & Peña, A. S. (2019, June 14). Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. Journal of the Endocrine Society. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676075/.
  47. Ye, Yu et al. Efficacy and safety of Berberine alone for several metabolic disorders: A systemic review and meta-analysis of randomized clinical trials. Front. Pharmacol. 2021.https://www.mskcc.org/cancer-care/integrative-medicine/herbs/berberine
  48. Yin, J., Xing, H., & Ye, J. (2008, May). Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism: clinical and experimental. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410097/.
  49. Yue SJ;Wang WX;Zhang L;Liu J;Feng WW;Gao H;Tang YP;Yan D; (n.d.). Anti-obesity and gut microbiota modulation effect of astragalus polysaccharides combined with berberine on high-fat diet-fed obese mice. Chinese journal of integrative medicine. https://pubmed.ncbi.nlm.nih.gov/34921647/.
  50. YX, C. (n.d.). Berberine. Memorial Sloan Kettering Cancer Center.  https://www.mskcc.org/cancer-care/integrative-medicine/herbs/berberine
  51. Zhang, C., Sheng, J., Li, G., Zhao, L., Wang, Y., Yang, W., Yao, X., Sun, L., Zhang, Z., & Cui, R. (1AD, January 1). Effects of berberine and its derivatives on cancer: A Systems Pharmacology Review. Frontiers. https://www.frontiersin.org/articles/10.3389/fphar.2019.01461/full.
  52. Zhang, J., Tang, H., Zhang, Y., Deng, R., Shao, L., Liu, Y., Li, F., Wang, X., & Zhou, L. (2014, May 1). Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation. International Journal of Molecular Medicine. https://www.spandidos-publications.com/10.3892/ijmm.2014.1695.

Astragalus Bibliography

  1. Auyeung KK, Han QB, Ko JK. Astragalus membranaceus: A Review of its Protection Against Inflammation and Gastrointestinal Cancers. Am J Chin Med. 2016;44(1):1-22. doi: 10.1142/S0192415X16500014. PMID: 26916911.
  2. Cui, Y., Wang, Q., Sun, R., Guo, L., Wang, M., Jia, J., Xu, C., & Wu, R. (2018, August 3). Astragalus membranaceus (Fisch.) Bunge repairs intestinal mucosal injury induced by LPS in mice. BMC complementary and alternative medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091064/.
  3. Denzler, K., Moore, J., Harrington, H., Morrill, K., Huynh, T., Jacobs, B., Waters, R., & Langland, J. (2016). Characterization of the physiological response following in vivo administration of astragalus membranaceus. Evidence-based complementary and alternative medicine: eCAM. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844899/.
  4. Gu, J., Sun, R., Wang, Q., Liu, F., Tang, D., & Chang, X. (1AD, January 1). Standardized astragalus mongholicus bunge-Curcuma Aromatica Salisb. extract efficiently suppresses colon cancer progression through gut microbiota modification in CT26-bearing mice. Frontiers. https://www.frontiersin.org/articles/10.3389/fphar.2021.714322/full.
  5. Irving, M. (2021, November 9). Anti-aging research uncovers New Role for Telomeres. New Atlas.  https://newatlas.com/biology/anti-aging-telomeres-genome-damage/.
  6. Lee, S.-Y., Tsai, W.-C., Lin, J.-C., Ahmetaj-Shala, B., Huang, S.-F., Chang, W.-L., & Chang, T.-C. (2017, September 26). Astragaloside II promotes intestinal epithelial repair by enhancing L-arginine uptake and activating the mTOR pathway. Nature News. https://www.nature.com/articles/s41598-017-12435-y.
  7. Liu, J.-Y., Lee, K.-F., Sze, C.-W., Tong, Y., Tang, S. C.-W., Ng, T.-B., & Zhang, Y.-B. (2012, December 5). Intestinal absorption and bioavailability of traditional Chinese medicines: A review of recent experimental progress and implication for Quality Control. OUP Academic.  https://doi.org/10.1111/j.2042-7158.2012.01608.x.
  8. Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis. 2017 Dec 1;8(6):868-886. doi: 10.14336/AD.2017.0816. PMID: 29344421; PMCID: PMC5758356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758356/.
  9. Panico Annalisa*1, Lupoli Gelsy Arianna1, Roberto Marcantonio2, BarbaLivia, Cacciapuoti Marianna1, MessinaGiovanni3 & Lupoli Giovanni1. (2019, July 11). A clinical study to evaluate the efficacy of a new neutraceutical combination based on resveratrol, Berberisand Astralagus extracts in comparisionto a formulation containing red yeast rice (Monacolin K) in patients with moderate dyslipidemia. Academia.edu. Indian Journal of Medical Research and Pharmaceutical Sciences. https://www.academia.edu/39801252/.
  10. Sarkar, A. A. (2021, December 13). Genome damage drives telomere-induced cellular aging. GEN. Retrieved May 7, 2022, from https://www.genengnews.com/aging/genome-damage-drives-telomere-induced-cellular-aging/.
  11. Tsoukalas, D., Fragkiadaki, P., Docea, A. O., Alegakis, A. K., Sarandi, E., Thanasoula, M., Spandidos, D. A., Tsatsakis, A., Razgonova, M. P., & Calina, D. (2019, October 1). Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Molecular Medicine Reports. Retrieved June 2, 2022, from https://www.spandidos-publications.com/10.3892/mmr.2019.10614.
  12. Vetvicka, V., & Vetvickova, J. (2014, May 1). Natural immunomodulators and their stimulation of immune reaction: True or false? Anticancer Research. Retrieved June 2, 2022, from https://ar.iiarjournals.org/content/34/5/2275.short.
  13. Yang MH, Kim J, Khan IA, Walker LA, Khan SI. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci. 2014 Apr 1;100(2):75-84. doi: 10.1016/j.lfs.2014.01.075. Epub 2014 Feb 12. PMID: 24530873.

Resveratrol Bibliography

  1. Danja J. Den Hartogh1,2 and Evangelia Tsiani1,2,*, Health Benefits of Resveratrol in Kidney Disease: Evidence from In Vitro and In Vivo Studies, Nutrients. 2019 Jul; 11(7): 1624.
  2. Almeida L;Vaz-da-Silva M;Falcão A;Soares E;Costa R;Loureiro AI;Fernandes-Lopes C;Rocha JF;Nunes T;Wright L;Soares-da-Silva P; (n.d.). Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Molecular nutrition & food research. Retrieved May 7, 2022, from https://pubmed.ncbi.nlm.nih.gov/19194969/.
  3. Almeida, L., Falcão, A., Maia, J., Mazur, D., Gellert, M., & Soares-da-Silva, P. (2005). Single-dose and steady-state pharmacokinetics of eslicarbazepine acetate (BIA 2-093) in healthy elderly and young subjects. The Journal of Clinical Pharmacology, 45(9), 1062–1066. https://doi.org/10.1177/0091270005279364.
  4. Baur JA;Pearson KJ;Price NL;Jamieson HA;Lerin C;Kalra A;Prabhu VV;Allard JS;Lopez-Lluch G;Lewis K;Pistell PJ;Poosala S;Becker KG;Boss O;Gwinn D;Wang M;Ramaswamy S;Fishbein KW;Spencer RG;Lakatta EG;Le Couteur D;Shaw RJ;Navas P;Puigserver P;Ingram DK;de Cab. (n.d.). Resveratrol improves health and survival of mice on a high-calorie diet. Nature. https://pubmed.ncbi.nlm.nih.gov/17086191/.
  5. Batista-Jorge, G.C., et al, Oral supplementation improves Metabolic Syndrome features in Obese patients submitted to a life-style changing program. Life Sciences, Vol 256, 2020. https://www.sciencedirect.com/science/article/pii/S0024320520307128?via%3Dihub
  6. Bhullar, K. S., & Hubbard, B. P, Lifespan and healthspan extension by resveratrol. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. Vol 1852, Issue 6, June 2015, Pages 1209-1218. https://www.sciencedirect.com/journal/biochimica-et-biophysica-acta-bba-molecular-basis-of-disease/vol/1852/issue/6
  7. Cameron, D. (2012, May 2). More evidence for longevity pathway. More evidence for Longevity Pathway | Harvard Medical School. Retrieved May 7, 2022, from https://hms.harvard.edu/news/more-evidence-longevity-pathway.
  8. Chang CC;Chang CY;Wu YT;Huang JP;Yen TH;Hung LM; (n.d.). Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. Journal of biomedical science.  https://pubmed.ncbi.nlm.nih.gov/21699681/.
  9. Csaki, Keshishzadeh, Fischer, & Shakibaei. (n.d.). Regulation of inflammation signaling by resveratrol in human chondrocytes in vitro. Biochemical pharmacology. https://pubmed.ncbi.nlm.nih.gov/17959154/.
  10. Csaki, Mobasheri, & Shakibaei. (n.d.). Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: Inhibition of il-1beta-induced NF-kappab-mediated inflammation and apoptosis. Arthritis research & therapy. https://pubmed.ncbi.nlm.nih.gov/19889203/.
  11. Elmali, Baysal, Harma, Esenkaya, & Mizrak. (n.d.). Effects of resveratrol in inflammatory arthritis. Inflammation.  https://pubmed.ncbi.nlm.nih.gov/17115116/.
  12. Gambini J;Inglés M;Olaso G;Lopez-Grueso R;Bonet-Costa V;Gimeno-Mallench L;Mas-Bargues C;Abdelaziz KM;Gomez-Cabrera MC;Vina J;Borras C; (n.d.). Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative medicine and cellular longevity.  https://pubmed.ncbi.nlm.nih.gov/26221416/.
  13. Granzotto, A., & Zatta, P. (2014, May 14). Resveratrol and alzheimer's disease: Message in a bottle on red wine and cognition. Frontiers in aging neuroscience. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030174/.
  14. Hoseini, A., Et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food and Function. Issue 9, 2019.
  15. Kao, C. L., Chen, L. K., Chang, Y. L., Yung, M. C., Hsu, C. C., Chen, Y. C., Lo, W. L., Chen, S. J., Ku, H. H., & Hwang, S. J. (1970, January 1). Resveratrol protects human endothelium from H2O2-induced oxidative stress and senescence via Sirt1 Activation. Taipei Medical University.  https://tmu.pure.elsevier.com/en/publications/resveratrol-protects-human-endothelium-from-h2o2-induced-oxidativ.
  16. Kleinedler, Foley, Alexander, Roerig, Hebert, & Dugas. (n.d.). Synergistic effect of resveratrol and quercetin released from drug-eluting polymer coatings for endovascular devices. Journal of biomedical materials research. Part B, Applied biomaterials.  https://pubmed.ncbi.nlm.nih.gov/21948767/.
  17. Koushki, M., Dashatan, & Meshkani. (n.d.). Effect of resveratrol supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Clinical therapeutics.  https://pubmed.ncbi.nlm.nih.gov/30017172/.
  18. Mertens-Talcott, S. U., & Percival, S. S. (2004, July 29). Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Letters.  https://www.sciencedirect.com/science/article/abs/pii/S0304383504004306
  19. Mobasheri, Henrotin, Biesalski, & Shakibaei. (n.d.). Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceuticals for joint health. International journal of molecular sciences.  https://pubmed.ncbi.nlm.nih.gov/22605974/.
  20. Mukherjee, S., Dudley, J. I., & Das, D. K. (2010, March 18). Dose-dependency of resveratrol in providing health benefits. Dose-response: a publication of International Hormesis Society.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990065/.
  21. Nunes, T., Almeida, L., Rocha, J.-F., Falcão, A., Fernandes-Lopes, C., Loureiro, A. I., Wright, L., Vaz-da-Silva, M., & Soares-da-Silva, P. (2009). Pharmacokinetics of trans-resveratrol following repeated administration in healthy elderly and young subjects. The Journal of Clinical Pharmacology, 49(12), 1477–1482. https://doi.org/10.1177/0091270009339191.
  22. Patel, Scott, Brown, Gescher, Steward, & Brown. (n.d.). Clinical trials of resveratrol. Annals of the New York Academy of Sciences.  https://pubmed.ncbi.nlm.nih.gov/21261655/.
  23. (2021, January 1). What dose of resveratrol should humans take? Resveratrol and Caloric Restriction - Life Extension.  https://www.lifeextension.com/magazine/2007/3/report_resveratrol.
  24. Rauf A;Imran M;Butt MS;Nadeem M;Peters DG;Mubarak MS; (n.d.). Resveratrol as an anti-cancer agent: A Review. Critical reviews in food science and nutrition.  https://pubmed.ncbi.nlm.nih.gov/28001084/.
  25. Rauf A;Imran M;Suleria HAR;Ahmad B;Peters DG;Mubarak MS; (n.d.). A comprehensive review of the health perspectives of resveratrol. Food & function.  https://pubmed.ncbi.nlm.nih.gov/29044265/.
  26. Rayalam S;Della-Fera MA;BaileCA; (n.d.). Synergism between resveratrol and other phytochemicals: Implications for obesity and osteoporosis. Molecular nutrition & food research.  https://pubmed.ncbi.nlm.nih.gov/21538845/.
  27. Resveratrol uses, benefits & dosage - drugs.com herbal database. Drugs.com. (n.d.).  https://www.drugs.com/npp/resveratrol.html.
  28. Resveratrol – the small molecule with big antiaging ideas. Longevity.Technology - Latest News, Opinions, Analysis and Research. (2021, October 11).  https://www.longevity.technology/resveratrol-the-small-molecule-with-big-antiaging-ideas/.
  29. Resveratrol - an overview | ScienceDirect Topics. (n.d.). Retrieved May 7, 2022, from https://www.sciencedirect.com/topics/chemistry/resveratrol.
  30. Smoliga, Hausenblas, & Baur. (n.d.). Resveratrol and health--a comprehensive review of Human Clinical Trials. Molecular nutrition & food research.  https://pubmed.ncbi.nlm.nih.gov/21688389/.
  31. Stuart, J. A., & Robb, E. L. (2013). Bioactive polyphenols from wine grapes. Springer New York.
  32. Trans-Resveratrol. Trans-Resveratrol - an overview | ScienceDirect Topics. (n.d.).  https://www.sciencedirect.com/topics/chemistry/trans-resveratrol.
  33. Varoni, E. M., Lo Faro, A. F., Sharifi-Rad, J., & Iriti, M. (2016, April 12). Anticancer molecular mechanisms of resveratrol. Frontiers in nutrition.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828556/.
  34. Vaz-da-Silva M;Loureiro AI;Falcao A;Nunes T;Rocha JF;Fernandes-Lopes C;Soares E;Wright L;Almeida L;Soares-da-Silva P; (n.d.). Effect of food on the pharmacokinetic profile of trans-resveratrol. International journal of clinical pharmacology and therapeutics. https://pubmed.ncbi.nlm.nih.gov/19000554/.
  35. Yang JY;Della-Fera MA;Rayalam S;Ambati S;Hartzell DL;Park HJ;Baile CA; (n.d.). Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life sciences.  https://pubmed.ncbi.nlm.nih.gov/18433793/.
  36. Yang MH, Kim J, Khan IA, Walker LA, Khan SI. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci. 2014 Apr 1;100(2):75-84. doi: 10.1016/j.lfs.2014.01.075. Epub 2014 Feb 12. PMID: 24530873.
  37. Zhou, X., Afzal, S., Zheng, Y.-F., Münch, G., & Li, C. G. (2021, September 4). Synergistic protective effect of curcumin and resveratrol against oxidative stress in endothelial EAHY926 cells. Evidence-Based Complementary and Alternative Medicine.  https://www.hindawi.com/journals/ecam/2021/2661025/.

Quercetin Bibliography

  1. Deepika, Maurya PK. Health Benefits of Quercetin in Age-Related Diseases. Molecules. 2022 Apr 13;27(8):2498. doi: 10.3390/molecules27082498. PMID: 35458696; PMCID: PMC9032170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032170/
  2. Gormaz JG, Quintremil S, Rodrigo R. Cardiovascular Disease: A Target for the Pharmacological Effects of Quercetin. Curr Top Med Chem. 2015;15(17):1735-42. doi: 10.2174/1568026615666150427124357. PMID: 25915608.
  3. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem. 2009 Jan 1;106(1):73-82. doi: 10.1002/jcb.21977. PMID: 19009557; PMCID: PMC2736626.
  4. Yang H, Song Y, Liang YN, Li R. Quercetin Treatment Improves Renal Function and Protects the Kidney in a Rat Model of Adenine-Induced Chronic Kidney Disease. Med Sci Monit. 2018 Jul 10;24:4760-4766. doi: 10.12659/MSM.909259. PMID: 29987270; PMCID: PMC6069490.
  5. Elumalai P, Lakshmi S. Role of Quercetin Benefits in Neurodegeneration. Adv Neurobiol. 2016;12:229-45. doi: 10.1007/978-3-319-28383-8_12. PMID: 27651256.
  6. Pandey AK, Patnaik R, Muresanu DF, Sharma A, Sharma HS. Quercetin in hypoxia-induced oxidative stress: novel target for neuroprotection. Int Rev Neurobiol. 2012;102:107-46. doi: 10.1016/B978-0-12-386986-9.00005-3. PMID: 22748828. https://doi.org/10.1016/B978-0-12-386986-9.00005-3
  7. Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, Asemi Z. The Therapeutic Potential of Quercetin in Parkinson's Disease: Insights into its Molecular and Cellular Regulation. Curr Drug Targets. 2020;21(5):509-518. doi: 10.2174/1389450120666191112155654. PMID: 31721700.
  8. Almeida, A., & et al. (n.d.). Bioavailability of quercetin in humans with a focus on interindividual variation. Comprehensive reviews in food science and food safety.  https://pubmed.ncbi.nlm.nih.gov/33350133/.
  9. Anand, Arulmoli, & Parasuraman. (n.d.). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy reviews.  https://pubmed.ncbi.nlm.nih.gov/28082789/.
  10. Andres S;Pevny S;Ziegenhagen R;Bakhiya N;Schäfer B;Hirsch-Ernst KI;Lampen A; (n.d.). Safety aspects of the use of quercetin as a dietary supplement. Molecular nutrition & food research.  https://pubmed.ncbi.nlm.nih.gov/29127724/.
  11. Arias, N., Macarulla, M. T., Aguirre, L., Milton, I., & Portillo, M. P. (2015, February 11). The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue - european journal of nutrition. SpringerLink.  https://link.springer.com/article/10.1007/s00394-015-0854-9.
  12. Baile CA;Yang JY;Rayalam S;Hartzell DL;Lai CY;Andersen C;Della-Fera MA; (n.d.). Effect of resveratrol on fat mobilization. Annals of the New York Academy of Sciences.  https://pubmed.ncbi.nlm.nih.gov/21261640/.
  13. Carbonaro, M., & Grant, G. (n.d.). Absorption of quercetin and rutin in rat small intestine. Annals of nutrition & metabolism.  https://pubmed.ncbi.nlm.nih.gov/16006787/.
  14. Cermak R;Wein S;Wolffram S;Langguth P; (n.d.). Effects of the flavonol quercetin on the bioavailability of simvastatin in pigs. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences. https://pubmed.ncbi.nlm.nih.gov/19804821/.
  15. Chan, Mattiacci, J. A., Hwang, H. S., Shah, A., & Fong, D. (n.d.). Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochemical pharmacology. https://pubmed.ncbi.nlm.nih.gov/11020457/.
  16. Chirumbolo, S. (n.d.). The role of quercetin, flavonols and flavones in modulating Inflammatory Cell Function, Inflammation & Allergy - Drug Targets (Discontinued) 2010; 9(4)
    https://www.researchgate.net/publication/47297852_The_Role_of_Quercetin_Flavonols_and_Flavones_in_Modulating_Inflammatory_Cell_Function.
  17. Crespy, V., Morand, C., Besson, C., Manach, C., Démigné, C., & Rémésy, C. (2001, August 1). Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. OUP Academic.  https://academic.oup.com/jn/article/131/8/2109/4686963.
  18. Cruz-Correa, M., & et al. (n.d.). Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association.  https://pubmed.ncbi.nlm.nih.gov/16757216/.
  19. Graefe, Derendorf, & Veit. (n.d.). Pharmacokinetics and bioavailability of the flavonol quercetin in humans. International journal of clinical pharmacology and therapeutics. https://pubmed.ncbi.nlm.nih.gov/10363620/.
  20. Guo, Y., & Bruno, R. S. (n.d.). Endogenous and exogenous mediators of quercetin bioavailability. The Journal of nutritional biochemistry.  https://pubmed.ncbi.nlm.nih.gov/25468612/.
  21. Hickson, L., et al. Senolytics decreased senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus quercetin in individuals with diabetic kidney disease. eBiomedicine the lancet summit October 27-28, 2022. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(19)30591-2/fulltext
  22. Hou, Chao, Ho, Wen, & Hsiu. (n.d.). Profound difference in pharmacokinetics between Morin and its isomer quercetin in rats. The Journal of pharmacy and pharmacology. https://pubmed.ncbi.nlm.nih.gov/12631412/.
  23. Hädrich G;Vaz GR;Maidana M;Kratz JM;Loch-Neckel G;Favarin DC;Rogerio Ade P;da Silva FM;Muccillo-Baisch AL;Dora CL; (n.d.). Anti-inflammatory effect and toxicology analysis of oral delivery quercetin nanosized emulsion in rats. Pharmaceutical research.  https://pubmed.ncbi.nlm.nih.gov/26687116/.
  24. Kleinedler JJ;Foley JD;Alexander JS;Roerig SC;Hebert VY;Dugas TR; (n.d.). Synergistic effect of resveratrol and quercetin released from drug-eluting polymer coatings for endovascular devices. Journal of biomedical materials research. Part B, Applied biomaterials.  https://pubmed.ncbi.nlm.nih.gov/21948767/.
  25. Konrad M, Nieman DC. Evaluation of Quercetin as a Countermeasure to Exercise-Induced Physiological Stress. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 10. Available from:https://www.ncbi.nlm.nih.gov/books/NBK299055/

  26. Liu, Lee, Sze, Tong, Tang, Ng, & Zhang. (n.d.). Intestinal absorption and bioavailability of traditional Chinese medicines: A review of recent experimental progress and implication for Quality Control. The Journal of pharmacy and pharmacology. https://pubmed.ncbi.nlm.nih.gov/23600379/

  27. Maguire, J. (2021, September 3). Drug cocktail reduces aging-associated disc degeneration. ScienceDaily. https://www.sciencedaily.com/releases/2021/09/210903085903.htm.
  28. Mertens-Talcott, S. U., & Percival, S. S. (2004, July 29). Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Letters. https://www.sciencedirect.com/science/article/abs/pii/S0304383504004306
  29. Murota, K., & Terao, J. (n.d.). Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Archives of biochemistry and biophysics. https://pubmed.ncbi.nlm.nih.gov/12921774/.
  30. Neamtu, Maghiar, Alaya, Olah, Turcus, Pelea, Totolici, & Mathe. (n.d.). A comprehensive view on the quercetin impact on colorectal cancer. Molecules (Basel, Switzerland).  https://pubmed.ncbi.nlm.nih.gov/35335239/.
  31. Novais EJ;Tran VA;Johnston SN;Darris KR;Roupas AJ;Sessions GA;Shapiro IM;Diekman BO;Risbud MV; (n.d.). Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nature communications.  https://pubmed.ncbi.nlm.nih.gov/34480023/.
  32. Navrotskaya VV, Oxenkrug G, Vorobyova LI, Summergrad P. Berberine Prolongs Life Span and Stimulates Locomotor Activity of Drosophila melanogaster. Am J Plant Sci. 2012 Jul;3(7A):1037-1040. doi: 10.4236/ajps.2012.327123. PMID: 26167392; PMCID: PMC4498586.
  33. Pasdar, Y., et al., Effects of Quercetin supplementation on hematological parameters in non-alcoholic fatty liver disease: a randomized double blind, placebo-controlled pilot study. Clin Nutr Res. 2020 Jan;9(1):11-19.
  34. RAK;, S. N. S. S. (n.d.). Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine: international journal of phytotherapy and phytopharmacology.  https://pubmed.ncbi.nlm.nih.gov/30599890/.
  35. Reinboth, Wolffram, Abraham, Ungemach, & Cermak. (n.d.). Oral bioavailability of quercetin from different quercetin glycosides in dogs. The British Journal of nutrition. https://pubmed.ncbi.nlm.nih.gov/20230651/.
  36. Siddiqui M;Abdellatif B;Zhai K;Liskova A;Kubatka P;Büsselberg D; (n.d.). Flavonoids alleviate peripheral neuropathy induced by anticancer drugs. Cancers. https://pubmed.ncbi.nlm.nih.gov/33805565/.
  37. Singh CK;George J;AhmadN; (n.d.). Resveratrol-based combinatorial strategies for Cancer Management. Annals of the New York Academy of Sciences.  https://pubmed.ncbi.nlm.nih.gov/23855473/.
  38. Su, j, Guo, Wei, J., & Yang, J. (n.d.). [study on the absorption of quercetin and rutin at different segments of intestine]. Wei sheng yan jiu = Journal of hygiene research. https://pubmed.ncbi.nlm.nih.gov/12561577/.
  39. Terao, J. (n.d.). Dietary flavonoids as antioxidants in vivo: Conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. The journal of medical investigation: JMI.  https://pubmed.ncbi.nlm.nih.gov/10687310/.
  40. Wang D;He X;Wang D;Peng P;Xu X;Gao B;Zheng C;Wang H;Jia H;Shang Q;Sun Z;Luo Z;Yang L; (n.d.). Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-Autophagy Pathway. Frontiers in cell and developmental biology.  https://pubmed.ncbi.nlm.nih.gov/33363176/.
  41. Yang JY;Della-Fera MA;Rayalam S;Ambati S;Hartzell DL;Park HJ;Baile CA; (n.d.). Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life sciences. https://pubmed.ncbi.nlm.nih.gov/18433793/.
  42. Zhang, S., Liang, W., Abulizi, Y., Xu, T., Cao, R., Xun, C., Zhang, J., & Sheng, W. (2021, May 11). Quercetin alleviates intervertebral disc degeneration by modulating p38 MAPK-mediated autophagy. BioMed research international. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133869/.
  43. Zhao, L., Cen, F., Tian, F., Li, M.-J., Zhang, Q., Shen, H.-Y., Shen, X.-C., Zhou, M.-M., & Du, J. (2017, December). Combination treatment with quercetin and resveratrol attenuates high fat diet-induced obesity and associated inflammation in rats via the AMPKΑ1/sirt1 signaling pathway. Experimental and therapeutic medicine.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740593/.
  44. S;Zhao A;Wang K;Fan Z;Yang H;Liao W;Bao S;Zhao L;Zhang Y;Yang Y;Qiu Y;Xie G;Li H;Jia W; (n.d.). Transcriptomic and metabonomic profiling reveal synergistic effects of quercetin and resveratrol supplementation in high fat diet fed mice. Journal of proteome research. https://pubmed.ncbi.nlm.nih.gov/22916952/.

β-NMN Bibliography

  1. Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016 Nov;17(11):679-690. doi: 10.1038/nrm.2016.93. Epub 2016 Aug 24. PMID: 27552971; PMCID: PMC5107309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107309/
  2. Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell. 2022 Aug;21(8):e13664. doi: 10.1111/acel.13664. Epub 2022 Jul 2. PMID: 35778957; PMCID: PMC9381899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381899/
  3. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell. 2015 Aug;14(4):497-510. doi: 10.1111/acel.12338. Epub 2015 Apr 22. PMID: 25902704; PMCID: PMC4531065.
    Copy. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531065/
  4. Albaum, S. (2020, February 23). Elysium basis or CHROMADEX Niagen -- which is best? right.  https://www.right-of-assembly.org/post/2018/04/14/elysium-basis-or-chromadex-niagen-which-is-best.
  5. Etchegaray, J.-P., & Mostoslavsky, R. (2016, June 2). Interplay between metabolism and epigenetics: A nuclear adaptation to environmental changes. Molecular cell.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893201/.
  6. Kawamura T;Mori N;Shibata K; (n.d.). Β-nicotinamide mononucleotide, an anti-aging candidate compound, is retained in the body for longer than nicotinamide in rats. Journal of nutritional science and vitaminology.  https://pubmed.ncbi.nlm.nih.gov/27725413/.
  7. Kiss T;Giles CB;Tarantini S;Yabluchanskiy A;Balasubramanian P;Gautam T;Csipo T;Nyúl-Tóth Á;Lipecz A;Szabo C;Farkas E;Wren JD;Csiszar A;Ungvari Z; (n.d.). Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging MIRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience. https://pubmed.ncbi.nlm.nih.gov/31463647/.
  8. Kiss T;Nyúl-Tóth Á;Balasubramanian P;Tarantini S;Ahire C;Yabluchanskiy A;Csipo T;Farkas E;Wren JD;Garman L;Csiszar A;Ungvari Z; (n.d.). Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: Transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. GeroScience.https://pubmed.ncbi.nlm.nih.gov/32056076/.
  9. Jun Li, Michael S. Bonkowski, Sébastien Moniot, Dapeng Zhang, Basil P. Hubbard, Alvin J. Y. Ling, Luis A. Rajman, Zhenkun Lou, David A. Sinclair. A conserved NAD binding pocket that regulates protein- protein interactions during aging. March 2017, volume 355, issue 6331, page 1312–1317
  10. Miao Y;Cui Z;Gao Q;Rui R;Xiong B; (n.d.). Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell reports. https://pubmed.ncbi.nlm.nih.gov/32755581/.
  11. Mills KF;Yoshida S;Stein LR;Grozio A;Kubota S;Sasaki Y;Redpath P;Migaud ME;Apte RS;Uchida K;Yoshino J;Imai SI; (n.d.). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell metabolism.  https://pubmed.ncbi.nlm.nih.gov/28068222/.
  12. Sebastián C;Satterstrom FK;Haigis MC;MostoslavskyR; (n.d.). From sirtuin biology to human diseases: An update. The Journal of biological chemistry.  https://pubmed.ncbi.nlm.nih.gov/23086954/.
  13. Rayalam S;Della-Fera MA;BaileCA; (n.d.). Synergism between resveratrol and other phytochemicals: Implications for obesity and osteoporosis. Molecular nutrition & food research.  https://pubmed.ncbi.nlm.nih.gov/21538845/.
  14. Shade C. The Science Behind NMN-A Stable, Reliable NAD+Activator and Anti-Aging Molecule. Integr Med (Encinitas). 2020 Feb;19(1):12-14. PMID: 32549859;PMCID: PMC7238909. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238909/
  15. Shavit, J. (2022, April 7). Enzymes reverses muscle loss due to aging and diseases like cancer and MD, study finds. Brighter Side News. Retrieved May 7, 2022, from https://www.thebrighterside.news/post/enzyme-reverses-muscle-loss-due-to-aging-and-diseases-like-cancer-and-md-study-finds.
  16. Sirtuin-activating compound. Sirtuin-Activating Compound - an overview | ScienceDirect Topics. (n.d.). https://www.sciencedirect.com/topics/medicine-and-dentistry/sirtuin-activating-compound.
  17. Stipp, D. (2015, March 11). Beyond resveratrol: The anti-aging nad fad. Scientific American Blog Network. https://blogs.scientificamerican.com/guest-blog/beyond-resveratrol-the-anti-aging-nad-fad/.
  18. Uddin, G. M., Youngson, N. A., Sinclair, D. A., & Morris, M. J. (2016, August 19). Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Frontiers in pharmacology.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990541/.
  19. Yao Z;Yang W;Gao Z;JiaP; (n.d.). Nicotinamide mononucleotide inhibits JNK activation to reverse alzheimer disease. Neuroscience letters.  https://pubmed.ncbi.nlm.nih.gov/28330719/.
  20. Yoshino, J., Baur, J. A., & Imai, S.-I. (2018, March 6). NAD+ intermediates: The biology and therapeutic potential of NMN and Nr. Cell metabolism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842119/.
  21. Zhang R;Shen Y;Zhou L;Sangwung P;Fujioka H;Zhang L;Liao X; (n.d.). Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. Journal of molecular and cellular cardiology. https://pubmed.ncbi.nlm.nih.gov/28882480/.
Back to blog
  • Nature Identical Bioactive Molecules

    Nature Identical Bioactive Molecules

    Several Nature Identical Bioactive Molecules have been identified that facilitate the cellular mechanisms that promote longevity. These elements work to...

    Nature Identical Bioactive Molecules

    Several Nature Identical Bioactive Molecules have been identified that facilitate the cellular mechanisms that promote longevity....

    Read More
  • NMN & Epigenome

    NMN & Epigenome

    Epigenome & NMN (Nicotinamide mononucleotide) The epigenome is a drove of chemical compounds (enzymes and coenzymes) that tell the genome what...

    NMN & Epigenome

    Epigenome & NMN (Nicotinamide mononucleotide) The epigenome is a drove of chemical compounds (enzymes and coenzymes) that...

    Read More
  • Berberine

    Berberine

    Berberine Berberine has been used in China for over a thousand years. This nature identical molecule is found in in...

    Berberine

    Berberine Berberine has been used in China for over a thousand years. This nature identical molecule...

    Read More
1 of 3